Skip to main content Skip to navigation
Washington State University
The Gene and Linda Voiland School of Chemical Engineering and Bioengineering

A Summer Filled with National Security-related Science

Student working in lab
Senior Kelly Fitzgerald working in the lab

Mix a senior chemical engineering student with some solid undergraduate research experience, good grades, and a passion for what she does, and you may not get a chemical reaction, but you will get a great candidate for a competitive internship program.

Kelly Fitzgerald
Kelly Fitzgerald

Kelly Fitzgerald has been selected as one of approximately 30 students in the U.S. to participate in the Pacific Northwest National Laboratory (PNNL)’s National Security Internship Program this summer.

PNNL, located in Richland, WA, is one of the Department of Energy’s ten national laboratories. The internship program provides the opportunity for students to participate in national security-related science. Fitzgerald will spend the summer working in the radio chemistry department, where she is expecting to work in computer modeling and electro-chemistry.

Fitzgerald learned about the internship from her chemistry professor, Sue Clark, and applied.

The two major benefits of the program are the possibility for tuition reimbursement and a great networking experience, she said.

Fitzgerald has been active in undergraduate research since her sophomore year, working in the lab with Clark, as well as with graduate and post-doctoral students.

“This really helped me get the internship because it gave me a lot of experience in a lab,” she said.

Fitzgerald hasn’t always been interested in chemical engineering, but her classes at WSU led her to her current career choice.

“My dad is a nuclear engineer, so I knew about engineering as an option early on,” she said. “I started out in bioengineering, but after taking two courses in chemical engineering, I realized I was much more interested in that.”

After completing her internship and her undergraduate studies, Fitzgerald is considering graduate school, possibly at WSU.

“I think I have the resources here where I could really excel in the program,” she said.

Although a little nervous about surviving the heat in the Tri-Cities all summer long, Fitzgerald said she is extremely excited for the internship.

“I’m excited to finally be in a work environment instead of just in the student role,” she said. “I can’t wait to do the work I’ve chosen as the career for the rest of my life.”

Port of Benton and WSU Research Project to Turn Nearly Any Organic Waste into Biofuels

Birgit Ahring
Birgit Ahring

RICHLAND, Wash. – An innovative idea for making advanced biofuels such as jet fuel, diesel and gasoline from regional resources is moving forward with a grant from the U.S. Department of Energy.

“This process will demonstrate the use of local biomass from our community and our farmers and it will answer questions across the state,” said Diahann Howard, Port of Benton economic development director. “It will also give more options locally to use waste for energy and not stockpile ag waste, which can create hazardous or unappealing situations.”

The team of WSU Tri-Cities, the Port of Benton, Clean-Vantage LLC and the Pacific Northwest National Laboratory will conduct the $1.5 million “BioChemCat” pilot project in the Bioproducts, Sciences, and Engineering Laboratory at Washington State University Tri-Cities under the leadership of Birgitte K. Ahring, Director of the WSU Center for Bioproducts and Bioenergy and the Battelle Distinguished Professor.

BioChemCat refers to the biorefinery process which makes use of both biochemical and thermochemical processes for making biofuels and biochemicals.

“The concept is feedstock agnostic, it doesn’t really care what kind of biomass you use,” Ahring explained. “It can use all kind of feedstocks – municipal waste, vineyard waste, feedlot manure, woody material, ag waste like corn stalks, straw or corn cobs after the kernels have been removed. It could be implemented all over the world.”

The project is funded with a DOE grant to the Port of Benton of $951,000 plus $549,000 in matching funds. Ahring expects to have the first results by early fall.

The project includes other new twists on biofuels production, including:

  • The waste can be wet — many biofuels processes first require that the waste be dried, which can be expensive and time consuming.
  • The process can be operated in a spoke-and-hub manner, where the initial part of the process (the creation of distillates) is done in small-scale local facilities, while the final upgrading into advanced fuels is done in a few specialized hubs.
  • Both parts of the process combine new break-through knowledge that allows for reducing the cost of the final fuel.
  • This process is expected to be high-yield, for example, potentially making more than 70 gallons of jet fuel per ton of dry materials. This is much higher than other known processes.
  • The process can be operated to produce either gasoline, diesel, or jet fuel depending on the needs. Therefore, it represents an example of producing “drop-in replacement fuel” for oil-based products.

“It’s really exciting because it’s a true Tri-City project,” Ahring said, noting the partnership includes a local company providing the overall concept, a university campus, the Port, a national laboratory setting up and operating the pilot facility, and the regional biomass materials that will be used. “We think we will be capable of demonstrating within two years that the BioChemCat process has major value.”

“The growth of the University leads to the growth of the Port,” Howard said. “This is exactly what we’re here to do.”

The BSEL building at WSU Tri-Cities is the core of the Center for Bioproducts and Bioenergy. The $24.8 million, 57,000-square-foot building opened in May 2008 in partnership with the State of Washington, Washington State University, the U.S. Department of Energy, and the Pacific Northwest National Laboratory. Half of the building, including the high bay, is occupied by PNNL research teams.

Another advantage of the BioChemCat research project is that it uses equipment purchased with the Washington State’s STAR researcher funding provided as part of the 2008–2009 recruitment package for Dr. Ahring.

WSU Tri-Cities is located along the scenic Columbia River in Richland, Wash. Established in 1989 with upper division and graduate programs, WSU Tri-Cities expanded in 2007 to a full four-year undergraduate campus offering 17 bachelor’s, 13 master’s, and seven doctoral degrees. Learn more about the most diverse campus in the WSU system at www.tricity.wsu.edu.